Problem: f(0()) -> cons(0(),n__f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {7,6,5} transitions: f1(2) -> 7* f1(14) -> 7,5 f1(4) -> 7* f1(1) -> 7* f1(3) -> 7* n__f1(12) -> 13* n__f1(2) -> 5* n__f1(4) -> 5* n__f1(1) -> 5* n__f1(3) -> 5* 01() -> 6,11 p1(12) -> 14* s1(11) -> 12* cons1(11,13) -> 5* cons1(6,13) -> 7* n__f2(2) -> 7* n__f2(14) -> 7,5 n__f2(4) -> 7* n__f2(16) -> 17* n__f2(1) -> 7* n__f2(3) -> 7* 02() -> 14* f0(2) -> 5* f0(4) -> 5* f0(1) -> 5* f0(3) -> 5* cons2(14,17) -> 5,7 00() -> 1* s2(14) -> 16* cons0(3,1) -> 2* cons0(3,3) -> 2* cons0(4,2) -> 2* cons0(4,4) -> 2* cons0(1,2) -> 2* cons0(1,4) -> 2* cons0(2,1) -> 2* cons0(2,3) -> 2* cons0(3,2) -> 2* cons0(3,4) -> 2* cons0(4,1) -> 2* cons0(4,3) -> 2* cons0(1,1) -> 2* cons0(1,3) -> 2* cons0(2,2) -> 2* cons0(2,4) -> 2* n__f0(2) -> 3* n__f0(4) -> 3* n__f0(1) -> 3* n__f0(3) -> 3* s0(2) -> 4* s0(4) -> 4* s0(1) -> 4* s0(3) -> 4* p0(2) -> 6* p0(4) -> 6* p0(1) -> 6* p0(3) -> 6* activate0(2) -> 7* activate0(4) -> 7* activate0(1) -> 7* activate0(3) -> 7* 1 -> 7* 2 -> 7* 3 -> 7* 4 -> 7* problem: Qed