Problem:
f(0()) -> cons(0(),n__f(s(0())))
f(s(0())) -> f(p(s(0())))
p(s(0())) -> 0()
f(X) -> n__f(X)
activate(n__f(X)) -> f(X)
activate(X) -> X
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {7,6,5}
transitions:
f1(2) -> 7*
f1(14) -> 7,5
f1(4) -> 7*
f1(1) -> 7*
f1(3) -> 7*
n__f1(12) -> 13*
n__f1(2) -> 5*
n__f1(4) -> 5*
n__f1(1) -> 5*
n__f1(3) -> 5*
01() -> 6,11
p1(12) -> 14*
s1(11) -> 12*
cons1(11,13) -> 5*
cons1(6,13) -> 7*
n__f2(2) -> 7*
n__f2(14) -> 7,5
n__f2(4) -> 7*
n__f2(16) -> 17*
n__f2(1) -> 7*
n__f2(3) -> 7*
02() -> 14*
f0(2) -> 5*
f0(4) -> 5*
f0(1) -> 5*
f0(3) -> 5*
cons2(14,17) -> 5,7
00() -> 1*
s2(14) -> 16*
cons0(3,1) -> 2*
cons0(3,3) -> 2*
cons0(4,2) -> 2*
cons0(4,4) -> 2*
cons0(1,2) -> 2*
cons0(1,4) -> 2*
cons0(2,1) -> 2*
cons0(2,3) -> 2*
cons0(3,2) -> 2*
cons0(3,4) -> 2*
cons0(4,1) -> 2*
cons0(4,3) -> 2*
cons0(1,1) -> 2*
cons0(1,3) -> 2*
cons0(2,2) -> 2*
cons0(2,4) -> 2*
n__f0(2) -> 3*
n__f0(4) -> 3*
n__f0(1) -> 3*
n__f0(3) -> 3*
s0(2) -> 4*
s0(4) -> 4*
s0(1) -> 4*
s0(3) -> 4*
p0(2) -> 6*
p0(4) -> 6*
p0(1) -> 6*
p0(3) -> 6*
activate0(2) -> 7*
activate0(4) -> 7*
activate0(1) -> 7*
activate0(3) -> 7*
1 -> 7*
2 -> 7*
3 -> 7*
4 -> 7*
problem:
Qed